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ABSTRACT

Four new methods of synthesis of nonuniformly spaced antenna
arrays are given:

IL The mechanical quadratures method, developed recently by
Bruce and Unz and independently by Lo.

I1. The eigenvalues method.

III. The expansion method.

IV. The orthogonalization method using the Schmidt's procedure.

An exponential-decay directive pattern is suggested in order to
avoid numerical integrations. A summary of the research work in non-
uniformly spaced antenna arrays is given.
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NEW METHODS FOR SYNTHESIS OF
NONUNIFORMLY SPACED ANTENNA ARRAYS

1. INTRODUCTION

The importance of directive, antennas was realized in the early days
of radio communications. The principles of wave interference, on

which systems of directive radio are based, has been known probably
for several centuries. However, the first thorough treatment of this
subject was conducted by Huygens and by Fresnel, who established the,
wave theory of light in the early part of the nineteenth century.

During the decade 1920-1930, a concentrated effort on directive
properties of antenna arrays was started. During this period short-
wave adio communications were becoming more popular, taking the

place of long radio waves, and the use of antenna arrays of reasonable
size became more feasible.

In 1937 Wolff' published his method of synthesizing any arbitrary
far-zone circularly symmetric pattern with radiators uniformly distribu-
ted along an array axis. His theory was based upon comparison of the

far-zone field of a pair of radiators to a term of the Fourier series ex-

pansion of the prescribed pattern.

During the second world war, the invention and the use of radar
increased the interest in directive arrays. In 1943 SchelkunoffZ util-
ized the correspondence between nulls of the pattern of a linear array
having equidistant elements and the roots of a polynomial in the complex

plane. Different types of: pattern variations were derived by choosing
different distributions of the zeros of the polynomial.

In 1946 Dolph 3 devised a method of synthesizing an optimum pattern
of isotropic elements equally spaced in a uniform broadside linear array,
in which the elements are fed in phase and are symmetrically arranged

about the center of the array. The resultant current distribution across
the array is based upon the properties of the Tchebyscheff polynomials

and offers, from the design standpoint, much greater control of the
pattern than previous theories.



Woodward 4 and Lawson . gave a method for calculating the field

over a plane aperture to produce a given polar diagramh and discussed

the theoretical precision with which an arbitrary radiation pattern may

be obtained from an array of finite size. This method i.s ba~sed on the
idea of matching the radiation pattern of the aperture at a finite number

of directions with the prescribed radiation pattern.

Van der .Maas 6 gave the ideal Tchebyscheff space factor corres-
ponding to a continuous: source of finite length, in the following formn:

"(la) F:(O) cos (r uz -A 3 )

2a
(Ib) u = - sine

where 2a in the length of the line source,. X is the wavelength, and 0 is
the angle from -the normal to the antenna axis. From the above it can

be found that:

(1c) ch ( w A) = side lobe ratio.

By using Fourier integrals, Taylor7 showed that the aperture current
distribution required in order to produce the ideal radiation pattern in
Eq. (1) is:

I,(A wrZ _pZ)

( 2 ) A
A w2~ - p2

1 1p -
+-, &(p - r) +-• -(p. + w) , p2 < r

g(p) 0 , pZ> Z

Z



where p = T ,, is the -Drar. delta function, and I is the modified

Bessel function. This pattern was considered later by Taylor 8 from
the complex function theory point of view. Because of theoretical limi-
tations, the above pattern cannot be obtained from a physically re-ilizab-le
antennabut its ideal characteristics can be approached arbitrarily
closely.

Cheng and Maýa proposed a new approach to the uniformly spaced
linear-array analysis. They considered the current distribution in
the discrete elements of the linear array as the sampled data values of
a continuous, function, and used known relations in, Z transforms devel-
oped for sarnp-Ied-data systems in order to express the array poly-
nomial in a closed form, where the array properties are easily found.

In all, of the above cases, the spacings of the array elements are
as sumed to be uniform. In 1956 Unz 9 ' O1" 1" first introduced linear
arrays with arbitrarily distributed elements and developed a theory for
them. A relationship between the currents in the elements of the array,
thleir distribution along the axisa of the array, and the coefficients of the
complex Fourier expansion of the radiation pattern were given in a
matrix form which involved Bessel functions. It was pointed out that a
nonun.'frmly spaced antenna array has -more degrees of freedom than

a similar uniform array with equally spaced elements, and as a result
its performance should be better.

Further numerical work on the subject has been done by King,,
Packard and Thomas' 2 , who showed that nonuniform antenna arrays
with unequally spaced elements are also more broadband for different
source, frequencies. This is especially useful because of the earlier
development of frequency-independent antenna elements by Rumsey,
DuHamel, Isbeil, and others' . Sandler'' showed. some equivalences
between e, -illy and unequally spaced arrays.

Andreaseni 5 and several of his associates did extensive numerical
work on digital and analog computers in order to find the general be-
havior of the radiation patterns of nonuniformly spaced arrays, in par-
ticular when the average spacing is larger than one wa ;elength. Swenson
and Lo' 6 considered the use of nonuniformly spaced arrays for large
radio telescopes. Harr;ngtonl 7 used perturbational procedures for
reducing the side-lobe level of a nonuniformly spaced array with uni-
form, excitation. Extensions of the previous theory to dipole elements

3



in the Fresnel zonel 8, and to nonuniform spacings larger than one
wavelength 9, were given by Unz. Bruce and Unz 2 0 gave a possible
condition for broadbanding. Maffett 2 1 discussed array factors with
a nonuniform spacing parameter by using well-known numerical, inte-
gration techniques (trapezoidal, Simpson), and considered a statistical

theory. Yen and Chow2 
1 a discussed the possibility of expressing, the

radiation pattern of large nonuniformly spaced arrays in closed form
by using integration by stationary phase technique.

Pokrovskii 2 2 designed a 4- and 6- element array having nonuni-
form spacing and uniform excitation of the elements, with improved
patterns over the Dolph-Tchebyscheff array for the same length and, the
same number of elements. Whil.e his method of solution is general,
the transcendental equations become more and more involved for larger
arrays. Additional discussion has been given by Brown3 4 .

Nonuniformly spaced arrays have several advantages, over uni-
formly spaced arrays; namely, their performance can be better, fewer
elements can be used, and they are more broadband. However, non-
uniformly spaced arrays are seldom used in practice at present. Be-
sides being latecomers, the great difficulty in synthesizing such, arrays
seem to be the main reason for the hesitancy to, use them.

Recently a new method of synthe-sizing radiation patterns using
nonuniformly spaced arrays has been developed by Bruce and Unz2 s' 2 4

They applied a mechanical quadratures formulation in order to trans-
form a continuous aperture distribution to a nonuniformly spaced array..
Because of its importance, a summary of this work will be given in
Secti~ori 3. of this paper. Some work along similar lines has been done
independently by Lo2 5.

The aim of this paper is to give new methods for synthesis of non-
uniformly spaced antenna arrays. It is hoped that these new methods
will be found useful in the design of nonuniformly spaced arrays and
helpful in achieving, the general use of their full potentialities.
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2. THE EXPONENTIAL PATTERN

One of the possible directive radiation patterns with exponential
decay, which will be used later on, can be written in, the form:

2az sinz e
"(3). F(9) e cos (2b sin 0)

where 8 is the angle of the radius vector from the normal to the array
axis, and "a", "b" are arbitrary constants. The maximum value of the
pattern in the direction normal to the array axis is normalized, F(O) 1.

The first null of the radiation pattern will be at 0 = 80 such that

ir
(4a) Zb sin o =

and the beamwidth w between the first nulls will be wo 0  eo ; one
obtains, therefore,

ir
(4b) b =

4 sin 7

Using Eq. (4b), the constant "b" can be determined if the beamwidth
between the nulls wo is specified.

Assuming the first side-lobe maximum of the radiation pattern to
be at e = 61 , then the sideý-lobe level M, of the. radiation pattern will be
defined by:

F(O) 1 ea sinz 6
(5a) M-= ....

tF(8e) l fF(e01) Icos (Zb sin9I

The side-lobe level in decibels. Mdb will be then:

(5b) Mdb = 20 log M =

- 20 (a2 sinz 9, loge - log cos (2b sin.01) I.
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In order to find tlke position of the first maximum, one should solve
F'(91) = 0. Using Eq. (3) one obtains-

b sin(2bsin 1 ) + az sin e 1 co's (2b sin e1 ) = 0.

Using the notation a = 2b sin GI one gets:

(6) tga a 2•, :• 2b z

Using Eq. (6) and the same notation, Eq. (5b) becomes:

(7) Mdb
= - 0.Zl7atga- log cosal20

Equations (6) and (7) may be used in order to find the relationship
between the constants "a"', "bI", and the side-lobe level Mdb, and the
results are shown graphically in Figures 1, 2, 3.

The required radiation pattern is given usually in terms of its
beamwidth w and the side-lobe level Mdb. From Eq. (4b) the constant
"b" of the radiation pattern can be found from the beamwidth w 0 . For

a given side-lobe level Mdb,the transcendental equation (7) can be
solved for a. This could be accomplished simply by using Figure 2.
Then Eq. (6) and the value of the constant "b" should be used in, order
to find the constant "a". Figure 1 could be helpful in this case. Figure
3, which is a combination of the previous figures, gives a direct rela-
tionship, in a graphical form, between the side-lobe level Mdb and the

a
2

constant Z-Z

W6 have seen thkt if the beamwidth wo and the side-lobe level Mdb
are given, the constants "a", "b" may be found and the directive, ex-

ponential-decay radiation pattern in Eq. (3) will be completely specified.

3. MECHANICAL QUADRATURES METHOD

Recently a new method of synthesis of nonuniformly spaced linear
arrays has been developed by Bruce and Unz; 3 ,Z 4 and independently
by Loz 5. They applied mechanical quadratures 2 6 in order to transform
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a continuous aperture distribution to a nonuniformly spaced array.
Because of its importance, a summary of this new method z 3, 24 is
presented here.

Using weight functions,, the general form ,of mechanical quadra-

tures s is given by:

+1I n

(8) w(x) f'(x) dx, H- f(a-j)
-l1 ji=l

The n values of aj are real, distinct, within the interval (-1, +1), and

are the roots of a polynomial orthogonal with respect to the weight
function w(x) on the interval (-1, +1). The n values of H. are real,
positive, and can be determined by solving the set of linear equations
generated by letting f(x) = xk for k = 0, 1, 2 ... 2n - 1. The only re-
quirements on the weight function are that it does not vanish within the
interval of integration and that it is integrable.

For a finite aperture with symmetric excitation, the radiation

pattern can be written as:

+1

(9) F(u) g .! ) g(x) cosuxdx

-l

where the aperture length has been normalized, u = Tr sin@, and x is
the distance from the origin measured in half wavelengths.

Comparing Eqs. (8) and (9), and taking the weight function to be
equal to the aperture distribution w(x) g(x), one obtains:

n

(1,0) F(u) L Hj cos (ua j )
j=l

Equation (10) is identified as the nonuniform symmetric array radiation
pattern, where the element positions are given by the n values of a. and

the current excitation coefficients are given by n values of H..

10



In case of no weight function, W(x) = 1, Eq, (8): becomes:ý

+1 n

(11) f(x) dx = * Hj; f(aj):Q

I -i j=l

and as a result, Eq. (10) becomesr:'

n

.(12) F(u) - j g(aj.)cos(ua.)

j=l

Bruce and UnzZ 3, Z 4 applied this method to the exponential direc-
tive radiation pattern described in Section 2, as well as to the Dolph-
Tchebyscheff patte'rnwith very good results. In the case of the ex-
ponential pattern,, by taking the weight function to be w(x) = e-xz one

finds the values of a. and Hj to be tabulatedz 6

The basic requirement for the mechanical quadratures method is
the knowledge of the aperture distribution g(x) in Eq. (9). If the radia-
tion pattern F(u) is prescribed, g(x) could be found sometimes by using
the inverse Fourier transform, as for the case of the exponential pat-
tern?. 3, Z 4 in Section. 2. Sometimes the aperture distribution g,(x) may
be found by taking the envelope 2 7 of an already designed uniformly-
spaced array, as for the case of the Dolph-Tchebyscheff pattern
In both case-s the current at the aperture edge will give difficulty', as
can be seen in Eq. (2), for example, and should be discussed separ-
ately

8 , 28

For the design of a general prescribed radiation pattern, the diffi-
culties of this method are twofold: (a) To find the aperture excitation
from the prescribed radiation pathern by a Fourier integral; (b) Approxi-

mating the aperture excitation by a polynomial, a process which will
involve the inversion of a matrix. However, for directive patterns
certain short cuts in the process have been shown above,.

.11



4. EIGENVALUES METHOD

A symmetric, nonuniformly spaced antenna array will give the

S radiation pattern:

L

('l3) F(u) A Icos,(ux1 )

A-= 0

where u = 7sin 9, R being the angle with the normal to the array axis,
and x is the distarce from the center, measured in half wavelengths.
In Eq. (13) the radiation pattern F(u) is given and the array element
distribution x, and the element amplitudes, A, have to be determined.

Let us discuss the integral:

(14a) I(xf;xm) cos. (uxt)cos(uxm)du.

When x, = xm one obtains:

sin Z xf -r"

(14b) II =(Ixg;xc =! 7r[ 1 + Z I "

By using trigonometric identities Eq. (14a) becomes:

sin (xi +x m)7 sin (x, - x)T7r
I(xI;Xm) xL+xm + MX, - xm

Equating the last expression to zero leads to:

(x m) sin(x, Xm 7Tr+ (x. +xm sin (x, x 7r 0.

(x-x+ ' m X ir 0

; 12



Rearranging,

x1[ sin (x• + xm)7Tr+ sinix Xm) r] =

= X[ sin(x1 : + Xm)T - sin(xi, -X

Using trigonometric identities, one obtains finally:

S(I 4c) (•• 7T) tg (XI 7T) =(XM 70 tg (Xm 7T) •

It is found that for the eigenvalues of Eq. (1 4c), the integral I(xl X)

in Eq. (14a) will have orthogonality properties such that:

sin 2x1 7r
(14d) I(x,;xm) 7T[ 1+ ] 6m

S.Zx•r l m

where

1 M.61'Pm ={0 I Xm.

is the Kronecker delta.

From Eq. ( f', or the eigenvalues one can see that all the posi-
tions of the radiating elements are determined by the position of the
first element with iespect to the middle of the array. In order to in-
clude the first eigenfunction in the complete set, the first element
position should be 0 < xo < 1 ; in other words, the distance between
the two innermost elements should be smaller than one wavelength. The
eigenvalues in general are unequally spaced for small values and are
almost equally spaced, a half wavelength apart, for large values.

Using the orthogonality properties in Eqs. (14) one may obtain
from Eq. (13):

1 sin 2 x7-I +7T
(5) [l+ ]r F(u)cos(ux )duu

13



S_,,

Thus, one could get a nonuniformly spaced array which will produce
any required radiation pattern. Its element distribution will be deter-
mined by Eq. (14c) and the currents will be determined by Eq. (15).

For the particular case of the exponential pattern, Eq. (3) may be
rewritten:

-a
2z

2b116) F(u)=e •' Z c'os (ý -- u).;

where u = 7T sine. Substituting Eq. (16) into Eq. (15) and using trigo-
nometric identities, one, may obtain definite integrals, which may be
evaluated approximately2 for a > 2:

az'7T -T-U2

(17) e '"T cos (Zpu)

00 0az 7Tz P
2 4

"e cos (Z p u) du Za

0

Using Eq. (17) one may obtain for the exponential pattern:
7t 7T
b+-r2 x b-- x

sin~x T ("a 1)2 (2 a

(18a) A1 =I ['LE1+Tx ]- 1 [ e +e.,
2 a

or in alternative form:

_in 2x -l -T. a- •7T X1
(18b) A1 = 7[1+ Yx,, , I e e b x,

14



Equations (18) give the current' distribution of an antenna array which
f produces the exponential radiation pattern in Eq. (3) or (16), and the
elements of the array are dist~ributed according to the eigenvalues of
Eq. (14c),

From Eq., (18a) one can see that for

(19) i > a +b
2i

the value of'A quickly becomes very small, and the contributions of
these terms to the radiation pattern are so small that they could be
neglected. Equation (19) gives an-indication of the number of elements
required to produce the exponential pattern within a certain approxi-
mation. -

For the particular condition of uniformly spacedarrays, one could
distinguish between two cases:

A. Odd number of elements:

In this case x^ = 0. and from Eq, (14c) one obtains x,= . Equation
15) becomes then:

(20a) A - F(u) cos (A u)*du I > 0
7[

1 •+ 7
(20b) A F(u)du

"7T"

B.. Even number of elements;

Ln this case x0 = . and from Eq. (1 4c) one obtains x + 1

Equation (15) becomes then:

(21) A = F(u) cos( +) udu27[

15



and the relationships, for the exponential pattern should be changed
accordinglyin Eqs. (18).

In the last two methodsý of Sections 3 and 4 the positions ,of the
array elements have been determined during the synthesis procedures.

These methods will fail in general when the element positions are, pre-
assigned. In the next two sections we will dis~cuss cases of this kind.

5.. EXPANSION METHOD

When the radiation pattern F (u)) is given and the nonuniformly dis-
tributed antenna array element positions, are preassigned, the determi-
nation ýof the currents A in Eq. (13) is relatively difficult. The reason
is that one fs required to expand a given function in terms .of a non-
orthogonal set, of functions. This problem has been discussed by Kan-
torovich and Krylov°3 0 .

One possible method of evaluating the coefficients A in Eq. (13)

will be to take any complete set of functions {?Pm (u)}, multiply both
sides of Eq. (13) by ?pm(u) and -integrate. One willl Obtain then a system
of equations:

L

(22a) : c-A, b ... m 0, 1- 2" L
ý=0

where:

+ 7'
(22b) c ,Im 5 cos (u xA)pml(u)du

7r

+7T

(ZZc) brn= 5 F (u) 1/m (u) d u

where c ) and b are known and A is to be evalnated by solving

(L + 1) linear equations with L + 1 unknowns.

16



I.

It will be useful to indicate also another method of obtaining sys-
tern (Z2a), which is doubtless even more convenient. Let us expand
Eq. (13) in terms of any orthono~rmal system /m(U) Let:

Co
•:r .00

(2 3b) cos (uxj) C M m(u)

m=O

............. where bm is given by Eq. (22c) and-c is given by Eq. ('22b). Sub-
mm

stituting Eqs. (23) into Eq. (13) and equating coefficients of V/ru) in both
sides, one obtains Eq. (22a). We note that the second method of ob-
taining system (22a) presupposes, as distinct from the first, a system
of functions i.n(u) that is orthogonal and normalized.

One possible such set is lPm(U) = cos mu. This set will have a
definite advantage, as Eq. (22a) will be simplified considerably if some
of the: elements, of the array are uniformly distributed at multiples of a
half wavelength~apart. Also, the integrals (22b) are readily available:.

The above method could be extended to the case of asymmetric
nonuniformly spaced arrays:

iuxI

(24) F(u) = A e

1=0
imu

One could take then *m,(u) = e Repeating the, above process, one

will obtain:

(2 5a) ct mAt= brn 0n=0, 1, 2 ... L1). m AI M

i=0

(2 5b) +Tr iux e imu 2 sin 7 (x + m)

T-r 7T (X + m)

17



(28c) b F(U) i mU d u,.

In this case, in general, b and A will be complex and one should take
both +:(m) and - (mi). The theory Aeveloped by Unz 9 1 11 originally is a

particular case of the method described in this section.,

"6. ORTHOGONALIZATION METHOD

In order to expand, an arbitrary, function in terms of a nonorthogonal

set of functions, the orthogonalization procedure by Schmidt may be

used. This proc-edure has been discuss:ed 'in detail by Kantorovich and

Krylov3
0, and its details for complex functions may be found in Appen-

d dixA of the present paper.

It may be shown3 0 th.t from an infinite set of nonorthogonal complex,

functions:

¢I(u), ý2 (u)..

an ,orthonorinal set of functions

7P, (u), *z (u) ""

-may be derived by using the relationships:

r -(u)

(26b) 4., (u) j1a=

(u)'1 (u) d(u) du

n

4)n.÷l (u) -ý ( a ¢ýn l +1 d' u) (u).
(26b ) *n+l (u) - r I

' [¢~l~u" ( on+, ?Pýd u) 7p.(u) 'd ,

ta nl a iu

j=l

where AA* = A[ . The orthonormal functions Wz (u), ?p3 (u), .. n+l(u)
may be found in succession.

18



The orthonorrina set V/n(U) obeys:

b, M
(2 71 a (u) xv)d u 6 1 =

a f.0 A

Let us assume that a set of nonorthogonal functions is given by:

(28) .(, .n'nu n - 1,.e 2., L

where x1 < x < < < xL. We would like to orthogonalize this

set of functions, in the region, ( -7r, +7T), where the orthono:x.rnaLsoet.will
be denoted by ?pin(u). From (28) and (26a). one obtains:

(2 9a) /1(u) = 1 i

Let us define the following, function:

+• -Tr i X m (xI - Xm) u + 7T

(29b) •i(xt-Xm)Uu+7T

= Z~r sin(x1 - Xm) Tr

(XI - Xm) 7r

where S,,..,

Using Eqs. (28), (29), and Eq., (Z6b),for, n 1, (Qone.obtains:

,1 x2 u ,i x1 u
6 • -2 SI 4 X

(29c) 4i2(u) 1 S,2

'9



Simiilarly, one may find in Eq. (26b) after rearranging:

(Z9C) *f3 (U)4

1, (1 S 2
2 )e'x3u ($3.2 -$, s 3 )Xe1 XZU (1Sl -ZSl , 3 ) elXu

By continuing the above process in Eq. (Z6b) one may find formally:

(Zge)' (4 ()u) = c )ei (4)ý X2 U X4 eU (4) IX4 U

or in general:

n

(Z9f) P n(u) = I e

(n)where the constants cn may be found 'by the Schmidt orthogonalization
procedure described above.

In the case of a general, asymmetric nonuniformly spaced array,
one has::

L

(30) F(u) = A A1ixfu
• =1

Taking the orthogonal set. of functions ?Pn(U) described in Eqs. ( 49 )one
could expand:

N

(31a) F (u) = Z Bn~nlu)
n=l
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where, using the orthogonality relationship in Eq. (27), one can find:

+7rS'(31b) B3n = F (u) • ('U)! du,
J~nl

-7r

Since F(u) is prescribed, B may be evaluated from Eq. (31b), usingi n
Eqs. (29).

Substituting Eq. (29f) into Eq. (31a) one obtains, after rearranging:
N n

(32) F(u)= e nn XU .
n1 ~=nS" n=l I =1

Comparing, Eqs. ( 32 ) and ( 30 ) one obtains:

(33a) A, B' c1  + B2 Ci ~+B c ( B (~N)

(33) =(2)(3) (N)
(33b) Az B2 c 2  +B 3 cz + BNNc 2

(33c) A3  B 3 C3 +" ( N)

(33d) A= B c(N)
N N N

By using the above procedure one can see that in principle the non-
uniformly spaced array , P.n be designed as well as uniformly spaced
arrays without using the process of inversion of large matrices. The
process of finding the orthogonal set of functions in general is rather
involved algebraically, but they could be found with the help of a digital
computer using the successivq process described by Eqs. (26). In gen-
eral the result will correspond to the radiation pattern within a certain
approximation, rather than be equal to it.

The great importance of this process of solution of nonuniformly
spaced arrays is that it is especially designated foi asymmetric non-
uniformly spaced arrays, which have more degrees of freedom than
symmetric nonuniformly spaced arrays. Of course, symmetric arrays
also can be designed by using this method.
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For the case of an exponential pattern described in Section 2, one
is able to use Eqs. (16) and (17) in order to integrate in Eq. (31b) and
find the corresponding coefficients .1n,

For the particular case of uniformly spaced arrays with • spacings,

one Will have in Eq. (29b):

(34a) xI X - m Sr 6 4n m

.-and Eqs. (29) become:

1 iui,, (34b, •hP lu) -". "" Z €

(34c) ?PZ (u) 1 u

(34d) */3 (U) - e

I inu
(34e) 7n- ( -

and Eqs. (31), (32 ) and (,33 ) will reduce to the standard Fourier
series analysis of uniformly spaced arrays.

7. SUMMARY

In this paper the published research work in, nonuniformly spaced
antenna arrays has been summarized to date. Four new methods for
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synthesis of nonuniformly spaced antenna arrays for a given radiation

pattern have been suggested:

I. The mechanical quadratures method, developed recently by

Bruce and UnzZ z 4 and independently by Loz 5 is summarized.

I." The eigenvalues method, where the positions of the elements

are given as eigenvalues of a transcendental equation.

III. The: expansion method, which involves the inversion of ma-

trices in order to find the currents of the elements.

IV. The orthogonalization method by Schmidt's procedure.

In methods I and I1 the positions of the elements are predetermined

by the weight function involved (method I), or by the position of the

innermost element (method II). In methods III and IV the array ele-

ments are first arbitrarily distributed (in accordance with the pre-

requisites, e, g.., broadbanding) and then the current distributions in

the elements are determined. Methods I and III will involve in general

the inversion of a matrix, while in methods II and IV this is avoided.

An exponential-decay radiation pattern is suggested and used as an

example in the above methods. Its main advantage in the present syn-

thesis is that the definite integrals .rnvolved may be approximately
evaluated explicitly, and thus simplify the numerical work. This
directive exponential pattern could also be used for electronic scanning 31

problems in the form:

35 F(0 -e sin- -Y )cos [2 b sin (,e- -y)]

where -y = y(t) is the angle direction in which the radiation pattern will
have a maximum and y(t) is a function of time. The above methods
could be modified slightly in order to calculate the required current
distribution by numerical integration. The linear -'.ase delay case for
scanni'ng may be6found as a particular case under certain approximations.

Some numerical work using the above methods has been done, and
it will 'be published in the future together with additional numerical work
and comparisons between the four methods of synthesis, with regard to
the best approximations.
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Sharp3U and Willey 3 suggested methods of design of linear and
planar arrays in order to reduce the number of the elements required

for a specific radiation pattern. Ishimaru 3 5 has recently suggested

the use of the Poisson's sum formula for the. design of nonuniformly

spaced arrays. His method is useful in treating nonuniform arrays
with large number of elements and unequally spaced arrays on curved
surfaces.

It is hoped that by using the synthesis methods suggested by the

author in the present paper and others, the design of the nonunilormly

spaced arrays, will become simpler and their use more generally

accepted.,
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"APPENDIX

In the following: we will extend the orthogonalization process of
Schmidt, as given by Kantorovich and Krylov, 30 to a set of complex
functions.

Let there be given an infinite system of complex functions,

U. (A- 1) 01 (u), ý2 (U), "

defined and continuous in the interval (a, b.). We can exclude from the
given system of functions those that represent linear combinations of
the preceding ones, since by their nature they do not extend the sys-
tem. Let us now carry through the. orthqgonalization of the system..
(A-I), i.e., let us now construct the orthonormal system of functions

(A - 2) 7p (u), Vý.' (u), ..

such -that

",(A- 3) 7p,(u) **r (u) d u 8,

where 6 ip the Kronecker delta, and ,m(u) is the complex conju-
I'm m

gate function. Each function of Eq. (A-Z) is to represent some linear
combination of the functions of system (A-i), i.e. , 1n(u) will have the
form:

(A-) n)(n) (n)
(A- 4) ?Pnu=a(1n) 1 (u) + a 2  42 (u) + - a(u)n n ¢n-u-)

Let us carry out this orthogonalization step by step. The first function
t/i (u) must have the form c , (u).

Determining the constant c from the condition

(5 b
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we find

S'€ (u)

Let us assume that the first n functions ?Pj (u), tz (u), "' n(u) have

been determined. The function n + 1 (u) must be a linear combination

of these and the function on+ 1(u) in the form:

" (A-6) ?pn l(u) = c1 ,(u) +c z V(u)+ + Cnn(u)+-.+n +(U"

We determine the constant c. (i 1, 2, n) from the conditions of1
orthogonality of Pn + i(u) to ?P (u), Pz (u) "'*mn(u); multiplying Eq. (A-6)

by ?P* (u) and integrating we obtain, using the orthogonality and normality
conditions:

b
(Ai-7a) c, + c O n+1(U) ?-(u)du 0.

a

Similarly, by multiplying by 4,* (u) and integrating:

b2

(A-7b) c. + cS0a (n+i(U) (u) du= 0

and so on.: Finally we obtain

b
(A-7c) n+ c+ Cn+ l(u)n * (u) du 0

Substituting c, c2 ," c- from Eqs. (A-7) into Eq., (A-6) one obtains:

n

.(A-8) *n+l(u) c n+I(u)" b (u)•(14du) *jlu}
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The constant c.can be determined from the normalization S 'n÷I 'a+I dul.

Using this, the final resuilt will be:

•,: n

j=1 *'a(A-ý9) *jj+ lu) r n b

i, S n+l(U) n+l• du)Wj(U)
: ' ~a SnlU " < a

J=1

where JA 14 AA*.

By means of Eq. (A-9) the, functions ?p2z (,u), ip3 (u) ... n+(u) may Ve found

in succession by cascade procedure.

After having constructed the orthonormal system,, one can write,
for any arbitrary function f(u), its series:

(A-lOa) f(u) An in(u)

1 n=l1

where the coefficients An may be found by using Eq. (A-3) to be

b
(A-10b) A= n f)(u)*n*lU) dLU

a

It is, of course, generally impossible to guarantee the convergence of the
series in (A-Oa). It would be, therefore, more correct to say that this
series corresponds to the function f(u.i) rather than is equal to it.

Substituting Eq. (A-4) into Eq. (A-l0a) one obtains:

("an) (n),(A-11) f(j,)- a/n) (u) 2)u;+*a 0(u)

n=l

f(u) is written in terms of combination of the original nonorthogonal set,

' nlU) •
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